Parabolic resonances in near integrable Hamiltonian systems

نویسنده

  • Anna Litvak-Hinenzon
چکیده

When an integrable Hamiltonian system, possessing an m-resonant lower dimensional normally parabolic torus is perturbed, a parabolic m-resonance occurs. If, in addition, the isoenergetic nondegeneracy condition for the integrable system fails, the near integrable Hamiltonian exhibits a at parabolic m-resonance. It is established that most kinds of parabolic resonances are persistent in n (n 3) d.o.f. near integrable Hamiltonians, without the use of external parameters. Analytical and numerical study of a phenomenological model of a 3 degrees of freedom (d.o.f.) near inte-grable Hamiltonian system reveals that in 3 d.o.f. systems new types of parabolic resonances appear. Numerical study suggests that some of them cause instabilities in several directions of the phase space and a new type of complicated chaotic behavior. A model describing weather balloons motion exhibits the same dynamical behavior as the phenomenological model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Resonances in near Integrable Hamiltonian Systems I Introduction

When an integrable Hamiltonian system, possessing an m-resonant lower dimensional normally parabolic torus is perturbed, a parabolic m-resonance occurs. If, in addition, the iso-energetic non-degeneracy condition for the integrable system fails, the near integrable Hamiltonian exhibits a at parabolic m-resonance. It is established that most kinds of parabolic resonances are persistent in n (n 3...

متن کامل

Parabolic resonances in 3 degree of freedom near-integrable Hamiltonian systems

Perturbing an integrable 3 degree of freedom (d.o.f.) Hamiltonian system containing a normally parabolic 2-torus which is m-resonant (m = 1 or 2) creates a parabolic m-resonance (m-PR). PRs of different types are either persistent or of low co-dimension, hence they appear robustly in many applications. Energy–momenta bifurcation diagram is constructed as a tool for studying the global structure...

متن کامل

Parabolic resonances and instabilities.

A parabolic resonance is formed when an integrable two-degrees-of-freedom (d.o.f.) Hamiltonian system possessing a circle of parabolic fixed points is perturbed. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, two d.o.f. Hamiltonian systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits...

متن کامل

Stability of Motions near Resonances in Quasi-Integrable Hamiltonian Systems

Nekhoroshev's theorem on the stability of motions in quasi-integrable Hamiltonian systems is revisited. At variance with the proofs already available in the literature, we explicitly consider the case of weakly perturbed harmonic oscillators; furthermore we prove the confinement of orbits in resonant regions, in the general case of nonisochronous systems, by using the elementary idea of energy ...

متن کامل

Resonant tori and instabilities in Hamiltonian systems

The existence of lower-dimensional resonant bifurcating tori of parabolic, hyperbolic and elliptic normal stability types is proved to be generic and persistent in a class of n degrees of freedom (DOF) integrable Hamiltonian systems with n 3. Parabolic resonance (PR) (respectively, hyperbolic or elliptic resonance) is created when a small Hamiltonian perturbation is added to an integrable Hamil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000